

Integrated Communication Navigation and Surveillance (ICNS) Conference

Airport and Terminal Area Communications Architectures

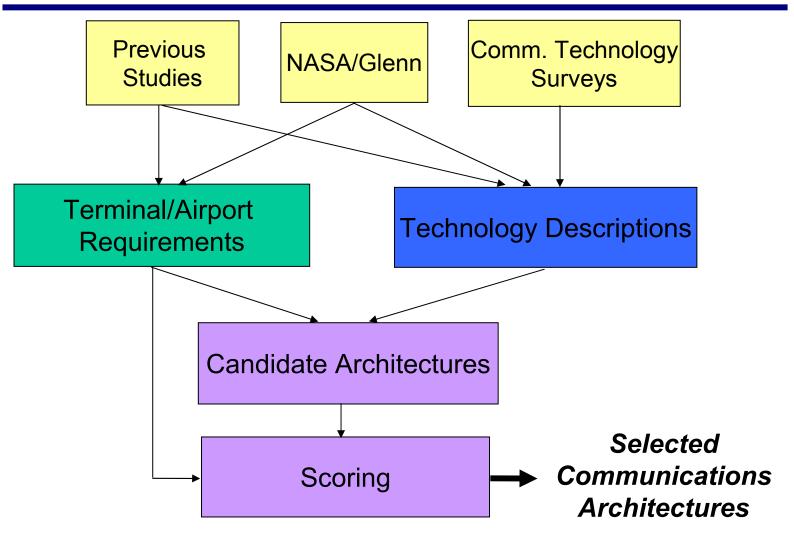
28 April 2004

Presenter: Sunita Munjal

Sunita Munjal - sunita.munjal@jhuapl.edu
Rob Pattay – robert.pattay@jhuapl.edu
Rob Nichols - robert.nichols@jhuapl.edu
Communication Systems and Network Engineering Group
Power Projection Systems Department
JHU Applied Physics Laboratory
Laurel, MD

Outline

- Project Background
- Architecture Analysis Process
- Airport Surface and Terminal Area Requirements
- Architecture Analysis
- Summary



Project Background

- APL is sponsored by the NASA Glenn Research Center (GRC) in the Weather Information Communications (WINCOMM) element of the Aviation Safety Program (AvSP)
 - Communications architecture development
 - Modeling/simulation (M&S)
- Architecture work is focused on two aviation applications:
 - Flight Information Services (FIS)
 - Tropospheric Airborne Meteorological Data Reporting (TAMDAR)
- M&S work focused on Automated Dependent Surveillance -Broadcast (ADS-B) links

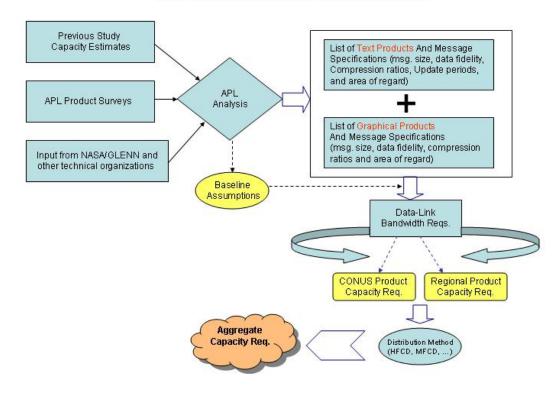
Architecture Analysis Process

Definitions

- Definitions required for regions of interest
 - No standard exists
 - Working definitions resulted from NASA GRC and APL discussions
 - Partitioned study to terminal area and airport
- Terminal
 - Arrival and departure region under 10,000 ft
 - Radius of 100 miles from airport
- Airport
 - Surface and within 5 miles from airport
- View weather and NAS status distribution in these domains as a subset of FIS-B system

Requirements

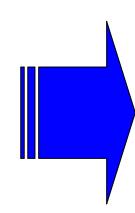
- Requirements were examined across the following areas:
 - Latency
 - Capacity
 - Connectivity/Topology
 - Number of Elements
 - Platform Constraints
 - Coverage
 - Link Availability
 - Cost
 - Traffic Type
 - Protection
 - Spectrum
- Various sources were used to derive estimates



Capacity Analysis

 As with FIS-B en route study, capacity was most difficult requirement to determine

- Capacity is a function of required product types, sizes and latency
 - Primarily weather products
 - "NAS Status" also included as part of FIS (e.g., NOTAMs)
- APL determined a "first principles" estimate
- Capacity aggregate still involves multiple distribution approaches
 - High Fidelity Comprehensive Distribution (HFCD)
 - Multiple Fidelity
 Comprehensive Distribution
 (MFCD)

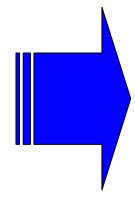

Capacity Requirements (FIS-B Ground-to-Air) Development Method

Airport Region

- Adopted a conservative approach to product inclusion
- Products
 - Surface Observation (METAR/SPECI- coded)
 - Terminal Area Forecast (Text- coded)
 - D-ATIS (Digital Text)
 - RVR (Runway Visual Report)
 - Convective SIGMET
 - Domestic SIGMET
 - AIRMET (Text)
 - Severe Weather Forecast Alert (Text)
 - Severe Weather Forecast Alert (Graphic)
 - Icing
 - Current Icing Potential (CIP)
 - Forecast Icing Potential (FIP)
 - National Convective Weather Forecast (NCWF) national
 - National Convective Weather Forecast (NCWF) national
 - Collaborative Convective Forecast Product
 - NEXRAD (National Composite Graphical)
 - NEXRAD (Graphical Regional)
 - NEXRAD (Graphical Regional 2km)
 - TWIP
 - Lightning (national depiction)
 - NOAA Radar Summary Chart
 - Area Forecast (text)
 - Pilot Report (PIREP) (Text)
 - Winds and Temps. Aloft
 - Significant Weather Prognostic Chart (low/high altitude)
 - Notices to Airmen
 - 3D Turbulence Diagnostic & Forecasting Product

MFCD Capacity: 451.8 kbps HFCD Capacity: 872.2 kbps

Airport Requirements Rollup


Scoring Requirement Area	Airport Surface FIS-B Requirements
Ground-to-Air Capacity	High-Fidelity, Comprehensive: 872.2 kbps
	Multi-Fidelity, Comprehensive: 451.8 kbps
Platform Constraints	Appropriate for GA/regional aircraft
Coverage	5 mile airport radius
Cost	Under \$5000 NRE; minimum recurring
Spectrum/Deployment	System operational by 2007 and 2015
Link Availability	99%
Latency	5 minutes

Terminal Region

Products

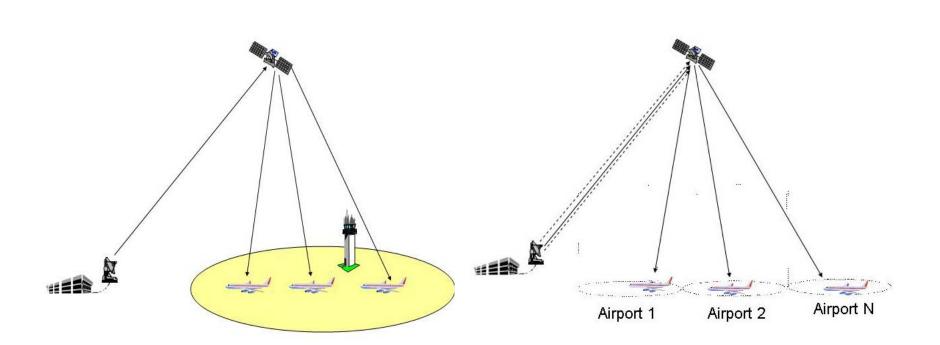
- Surface Observation (METAR/SPECI-coded)
- Terminal Area Forecast (Text-coded)
- D-ATIS (Digital Text)
- RVR (Runway Visual Report)
- NEXRAD (Graphical Regional)
- TWIP
- Lightning

MFCD Capacity: 9.7 kbps

Terminal Requirements Rollup

Scoring Requirement Area	Terminal FIS-B Requirements
Ground-to-Air Capacity	Multi-Fidelity, Comprehensive: 9.7 kbps
Platform Constraints	Appropriate for GA/regional aircraft
Coverage	100 mile airport radius
Cost	Under \$5000 NRE; minimum recurring
Spectrum/Deployment	System operational by 2007 and 2015
Link Availability	99%
Latency	1 minute

Scoring Methodology


- Scoring conducted through a series of "filters"
- Only viable technologies passed to next scoring filter

Score	Description
-1	System does not meet requirements
0	Information obtained is currently inadequate to score
1	System can support requirement
2	System can support requirement with substantial margin

SATCOM Architectures

HFCD MFCD

SATCOM Scores

Airport

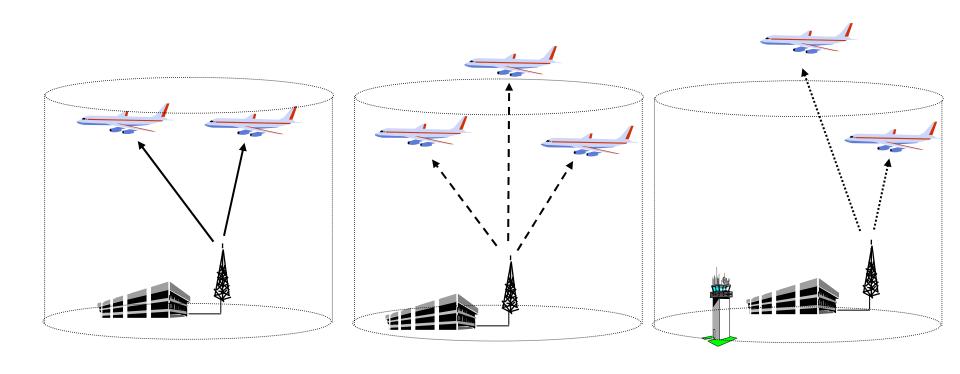
System	HFCD	MFCD
T 1 1 1		
Iridium	-1	-1
Globalstar	-1	-1
ICO	2	2
Ellipso	-1	-1
Teledesic	2	2
Inmarsat	-1	1
Spaceway	2	2
eSAT	-1	1
UHF	-1	-1
SHF	2	2
S-DARS	0	0
Store-and-Forward	-1	-1

System	Platform Constraints	Coverage	Cost
ICO	1	2	1
Teledesic	-1	2	-1
Inmarsat	2	2	1
Spaceway	-1	2	-1
eSAT	0	2	0

System	Spectrum/ Deployment	Link Availability	Latency
ICO	1	0	2
Inmarsat	2	0	2

Terminal

System	MFCD
Iridium	1
Globalstar	1
ICO	2
Ellipso	2
Teledesic	2
Inmarsat	2
Spaceway	2
eSAT	2
UHF	2
SHF	2
S-DARS	0
Store-and-Forward	-1


System	Platform Constraints	Coverage	Cost
Iridium	2	2	2
Globalstar	2	2	2
ICO	1	2	1
Ellipso	1	2	1
Teledesic	-1	2	-1
Inmarsat	2	2	1
Spaceway	-1	2	-1
eSAT	0	2	0

System	Spectrum/	Link	Latency
	Deployment	Availability	
Iridium	1	0	2
Globalstar	1	0	2
ICO	1	0	2
Ellipso	1	0	2
Inmarsat	2	0	2

LOS Architectures

LOS Scores

Airport

System	HFCD	MFCD
VDL M2	-1	-1
VDL M3	-1	-1
VDL M4	-1	-1
1090 ES	-1	-1
Mode S	-1	-1
UAT	-1	-1
GATElink	2	2
HFDL	-1	-1
Wi-Fi	2	2
3G Cellular	-1	-1
4G Cellular	2	2
Aircell	-1	-1
Magnastar	-1	-1
Mobitex	-1	-1
ACARS	-1	-1
AAN	-1	-1

System	Platform	Coverage	Cost
	Constraints	_	
GATElink	2	-1	0
Wi-Fi	2	-1	2
4G Cellular	2	1	2

System	Spectrum/	Link	Latency
	Deployment	Availability	
4G Cellular	1	0	0

Terminal

System	MFCD
VDL M2	2
VDL M3	2
VDL M4	2
1090 ES	2
Mode S	2
UAT	2
GATElink	2
HFDL	-1
Wi-Fi	2
3G Cellular	2
4G Cellular	2
Aircell	1
Magnastar	1
Mobitex	-1
ACARS	-1
AAN	-1

System	Platform	Coverage	Cost
	Constraints		
VDL M2	2	2	1
VDL M3	2	2	1
VDL M4	2	2	1
1090 ES	2	2	1
Mode S	2	2	1
UAT	2	2	1
GATElink	2	-1	0
Wi-Fi	2	-1	2
3G Cellular	2	1	2
4G Cellular	2	1	0
Aircell	2	1	1
Magnastar	2	1	-1

System	Spectrum/	Link	Latency
	Deployment	Availability	
VDL M2	2	2	2
VDL M3	1	2	2
VDL M4	1	2	2
1090 ES	2	2	2
Mode S	2	2	2
UAT	2	2	2
3G Cellular	1	0	2
4G Cellular	1	0	2
Aircell	2	0	2

Summary

- Capacity varies greatly depending on product composition
 - Dominated by a few large products
- Terminal has many options however the role of terminal vs. en route FIS and airport domain should be assessed
- Airport region has significant capacity due to the conservative inclusion of products
 - Results in few technology options
 - Range is important requirement to refine
 - Commercial wireless may be a suitable technology for shorter ranges